KIT - Karlsruhe Institute of Technology image/svg+xml
KIT Center MathSEE
  • skip navigation
  • Home
  • Legals
  • Privacy Policy
  • Accessibility
  • Sitemap
  • KIT
    search
    • Our Center
      • Our Center
      Our Center
      • Mission and Strategy
      • Members and Organization
        • Members and Organization
        Members and Organization
        • Members Directory
        • Membership
      • Corporate Design
      • Contact
      • Job Offers
    • Research
      • Research
      Research
      • Method Areas
        • Method Areas
        Method Areas
        • Method Area 1: Mathematical structures: shapes, geometry, number theory and algebra
        • Method Area 2: Mathematical modeling, differential equations, numerics, simulation
        • Method Area 3: Inverse problems, optimization
        • Method Area 4: Stochastic modeling, statistical data analysis and forecasting
      • Current Third Party Funded Projects
        • Current Third Party Funded Projects
        Current Third Party Funded Projects
        • BMBF funded projects
        • DFG Funded Research
        • European Union Funded Projects
        • Helmholtz Coordinated Research
      • Our Offers
        • Our Offers
        Our Offers
        • Workshop Funding
        • Seed Funding
          • Seed Funding
          Seed Funding
          • Seed Projects 2023
          • Seed Projects 2022
          • Seed Projects 2021
          • Seed Projects 2020
          • Seed Projects 2019
      • Software
    • Graduate Schools
      • Graduate Schools
      Graduate Schools
      • MathSEED
      • KIT Graduate School Computational & Data Science
    • Innovation
    • Events
      • Events
      Events
      • MathSEE Workshops
        • MathSEE Workshops
        MathSEE Workshops
        • 2026 - Workshop – MADE@KIT
        • 2026 - Workshop – Data-driven methods for partial differential equations
        • 2025 - Workshop | Collaborative and Market-Based Analytics and Forecasting
        • 2025 - Workshop SWIM
        • 2024 - SWIM
        • 2024-Workshop: UM-Bridge
        • 2024-Method Area 4 Workshop
        • 2024-Workshop: Explainable Artificial Intelligence (xAI)
        • 2023-TEEMLEAP
        • 2023-Workshop: UM-Bridge
        • 2023-Deep Learning - Recent Advances in Kernel Methods for Neural Networks
        • 2022-Particle and astroparticle physics
        • 2022-Multiscale effects in mechanics
        • 2021-mathematics of climate and environmental sciences
        • 2021-Advanced Mobility Systems
        • 2021-particle and astroparticle physics
        • 2021-data science for material science
        • 2021-Workshop: Anything related to COVID-19
      • MathSEE Research Seminars
        • MathSEE Research Seminars
        MathSEE Research Seminars
        • 2025 - Collaborative and Market-Based Analytics and Forecasting
        • 2025 - Statistical analysis of overparameterized neural networks
        • 2025 - International Excellence Talk and MathSEE Lecture, Prof. Dr. Victoria Stodden
        • 2024 - The finite crystallization problem
        • 2024 - Modeling and numerical simulation of wave propagation phenomena
        • 2024 Topological quantum field theory as an interface between algebra and topology
        • 2024 - Data Science, Where Statistics Meets Optimization
        • 2024 - Mathematics and the Formal Turn
        • 2024 - High Performance Computing and Machine Learning for the Energy Challenge: Mathematical Colloquium
        • 2024 - The Role of Statistical Theory in Understanding Deep Learning
        • 2023 - Measuring dependence between a scalar response and a functional covariate
        • 2023 - Foundations of Machine Learning: Over-Parameterization and Feature Learning
        • 2023 - On the nonlinear instability of the Burgers vortex
        • 2023 - Electricity price forecasting in the 2020s
        • 2023 - Particle Filters: A general Introduction and 2 Examples
      • MathSEE Symposia
        • MathSEE Symposia
        MathSEE Symposia
        • 2023 MathSEE Symposium
        • 2020 MathSEE Symposium
      • Public Engagement Events
        • Public Engagement Events
        Public Engagement Events
        • 2025 KIT Open Day
        • 2025 KIT in the Town Hall (KIT im Rathaus)
        • 2024 Wissenswoche Mathematik
        • 2023 KIT Open Day
        • 2022 2025 KIT in the Town Hall (KIT im Rathaus)
    • Archiv
    • Startpage
    • Home
    • Legals
    • Privacy Policy
    • Accessibility
    • Sitemap
    • search
    KIT Center MathSEE

     

    • Startpage
    • Research
    • Our Offers
    • Seed Funding
    • Seed Projects 2019

     

    • Startseite
      • Our Center
      • Research
      • Graduate Schools
      • Innovation
      • Events
      • Archiv
    • Research
      • Method Areas
      • Current Third Party Funded Projects
      • Our Offers
      • Software
    • Our Offers
      • Workshop Funding
      • Seed Funding
    • Seed Funding
      • Seed Projects 2023
      • Seed Projects 2022
      • Seed Projects 2021
      • Seed Projects 2020
      • Seed Projects 2019
    • Seed Projects 2019
    Seed Projects 1-2019
    Title PI (Math) PI (SEE)
    Innovative approach for the prediction of fluid dynamic properties of flow over rough surfaces

    Mathias Krause

    Pourya Forooghi, Alexander Stroh, Davide Gatti

    Zeiteffiziente Optimierung aufwendiger Prozesssimulationen unterstützt durch Maschinenlernen

    Oliver Stein

    Luise Kärger, Clemens Zimmerling

    Data-Driven Modeling of Materials: From Surface Measurements to Constiutive Material Models

    Christian Wieners

    Katrin Schulz

    Konstruktive Entwicklung und Analyse von Lattice Boltzmann Methoden für partielle Differentialgleichungen mit Anwendung in der Verfahrenstechnik

    Mathias J. Krause, Martin Frank, Willy Dörfler

    Hermann Nirschl

    Steigerung der Effizienz der Phosphat Rückgewinnung durch Aufklären von Strömungs- und Beladungsvorgängen anhand Modellierung und Simulation

    Mathias J. Krause

    Hermann Nirschl

    Neue Lösungen der Kontinuitätsdifferentialgleichung mit Phasengleichgewicht zur Verbesserung der Ergebnisse bei der Auswertung von Experimenten

    Kaori Nagatou

    Frederik Arbeiter, Axel von der Weth, Volker Pasler

    Development of quantitative electron tomography approaches for nanoporous materials

    Roland Griesmaier

    Christian Kübel

    Seed Projects 2-2019
    Title PI (Math) PI (SEE)
    Verbesserung von Vorhersagemodellen auf Basis heterogener Feinstaub-Messnetzwerke unter Anwendung erweiterter stochastischer Regressionsmodelle.

    Johannes Riesterer, Sebastian Lerch

    Paul Tremper, Oliver Grothe

    Charakterisierung Kurzfaser-verstärkter Verbundwerkstoffe durch Minkowski-Tensoren

    Steffen Winter, Daniel Hug, Günter Last

    Matti Schneider, Thomas Böhlke

    Verbesserung von Vorhersagemodellen auf Basis heterogener Feinstaub-Messnetzwerke unter Anwendung topologischer Datenanalyse

    Roman Sauer

    Johannes Riesterer, Michael Schrödl

    Surface roughness and anisotropy of natural rock joints (Oberflächenrauigkeit und Anisotropie natürlicher Gesteinsklüfte)

    Steffen Winter

    Philipp Blum, Sina Hale

    Tropfendeformation und -aufbruch im laminar–turbulenten Transitionsregime

    Mathias J. Krause

    Heike P. Karbstein

    Asset allocation and asset pricing in regulated markets and institutions

    Nicole Bäuerle

    Marliese Uhrig-Homburg, Melanie Schienle

    last change: 2024-04-26
    KIT – The University in the Helmholtz Association
    • Home
    • Legals
    • Privacy Policy
    • Accessibility
    • Sitemap
    • KIT